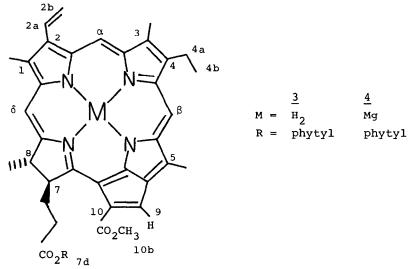
9-DESOXO-9,10-DEHYDROCHLOROPHYLL a A NEW CHLOROPHYLL WITH AN EFFECTIVE 20-PI ELECTRON MACROCYCLE

Michael R. Wasielewski* and John F. Thompson¹


Chemistry Division, Argonne National Laboratory Argonne, Illinois 60439

(Received in USA 30 December 1975; received in UK for publication 30 January 1978)

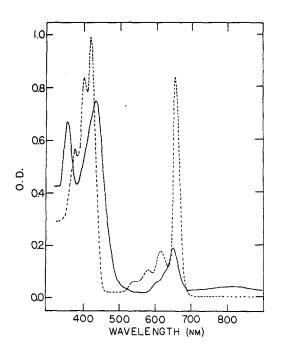
The enolic tautomer of the β -keto ester in ring V of chlorophyll a, Chl a, has been suggested as a possible intermediate in the photochemistry of P700 Chl a special pairs in green plant photoreaction centers.² Moreover, this tautomer may be involved in the photo-oxidation of Chl a by molecular oxygen.³ Attempts to trap the Chl a enol as an enol ester or a silyl enol ether lead to very unstable products.⁴ In order to investigate these phenomena we have prepared a new stable Chl a derivative, <u>4</u> in which ring V is fully unsaturated. The resulting macrocycle possesses a π electronic system very similar to that of the enol and thus serves as a useful model for photochemical studies.

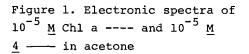
9-Desoxo-9,10-dehydrochlorophyll a, <u>4</u> was prepared by the following route: The 9-keto group of pheophytin a, <u>1</u> was reduced with NaBH₄ in CH₃OH to yield a diastereomeric mixture of 9-desoxo-9-hydroxypheophytins a, <u>2</u> (87%).⁵ Mild elimination of H₂O from ring V was effected by treating the mixture of alcohols (1.5 mmoles) in pyridine at 0° with excess trifluoroacetylimidazole over 5 minutes. Addition of 1,8-bis(dimethylamino)naphthalene (3 mmoles) followed by 30 minutes stirring at 0°, 3 hours at 25°, and conventional work up yielded 9-desoxo-9,10-dehydropheophytin a, <u>3</u> (93%; MS: m/e 854, M⁺; λ_{max} (ε) acetone : 800 (1330), 625 (4000), 425 (55200), 350 (38800); ¹H nmr: see Table I; ir: (CCl₄) 1710, 1738 cm⁻¹ C=O). 1044

Magnesium insertion into 3 was carried out with excess Mg(Clo_4)₂ in refluxing pyridine.⁶ The resulting solutions of 4 were maintained at 0-5° during work up of the reaction mixture to prevent demetallation (60%).

The proton chemical shifts in the nmr spectrum of $\underline{4}$ differ substantially from those of Chl a, Table I. For example, the α , β , and δ methine protons of Chl a exhibit large downfield shifts characteristic of an effective 18 T electron macrocycle.⁷ However, the resonances of the corresponding protons in $\underline{4}$ are shifted upfield by nearly 2 ppm relative to those in Chl a. A similar effect of lesser magnitude has been observed in the magnesium enolate of methyl pheophorbide a.⁸ The nmr data for this chelated enol may be compared directly with that obtained for $\underline{3}$ (Table I). Compound $\underline{3}$ is somewhat less diatropic than the chelated enol. This indicates that the 9,10 double bond in $\underline{4}$ significantly perturbs the T electronic structure of the macrocycle.

This view is further supported by a comparison between the electronic spectra of $\underline{4}$ and Chl a (Figure 1). The Soret band of $\underline{4}$ is split into two distinct maxima at 445 nm and 363 nm. This is quite different from the single broad Soret band of Chl a at 430 nm. The magnesium enolate of methyl pheophorbide a also exhibits a split Soret band. The 650 nm absorption band of $\underline{4}$ is tentatively assigned to the $Q_y(0,0)$ transition and is substantially blue shifted from the


corresponding 663 nm band in Chl a. In addition, the oscillator strength of this band is only about 10% that of the band in Chl a. This loss in oscillator strength is consistent with a decrease in the dipole moment of $\underline{4}$ along the ring I - ring III axis due to the absence of the 9-keto group. The most interesting feature in the spectrum is the broad, low energy absorption centered at 800 nm. This band is unique to this π electronic system and is notably absent in the magnesium enolates.⁸ No fluorescence emission directly attributable to $\underline{4}$ was detected at wavelengths < 825 nm when the molecule was excited with 400 nm light. This behavior is similar to that observed for the magnesium enolates.⁸ Either radiationless deactivation to the ground state or efficient intersystem crossing to the triplet state may account for this result. We are currently examining the triplet state properties of $\underline{4}$ to elucidate this point.


TABLE I

proton	Chl a	Mg enolat	ze <u>3</u>	<u>4</u>	proton	Chl a	Mg enolat	2e 3	<u>4</u>
β-Н	9.75	9.01	8.37	7.87	10b-CH3	3.76	3.83	3.86	3.63
$\alpha - H$	9.57	8.83	8.28	7.69	8-н	4.42	4.10	3.75	?
2a-H	8.08	7.77	7.54	7.32	7d-CH3	-	3.38	-	-
δ - Η	8.71	8.00	7.53	6.71	4a-CH2	3.54	3.29	3.22	3.04
9-H	-	-	7.11	6.49	5-CH3	3.42	3.11	2.91	2.63
2b-H _A	6.23	6.06	6.00	5.69	3-CH3	3.21	2.95	2.87	2.56
2b-H _B	6.05	5.87	5.93	5.53	1-CH3	3.08	2.83	2.76	2.48
7-н	4.29	4.65	4.73	?	5				

Proton Chemical Shifts*

 $^{*}\delta$ ppm The chemical shifts of the phytyl resonances and that of 4b-CH_a are not given. They are identical for each compound with those reported for Chl a (Ref.7). All nmr spectra were recorded in 10% pyridine-d₅ in benzene-d₆ at concentrations of 0.02-0.03 <u>M</u>.

<u>Acknowledgement:</u> This work was performed under the auspices of the Division of Basic Energy Sciences of the Department of Energy.

References

- Undergraduate Research Participant, Argonne Center for Educational Affairs, Supported by the Division of Basic Energy Sciences of DOE.
- F. Fong, "Theory of Molecular Relaxation: Applications to Chemistry and Biology", Wiley-Interscience, New York, N.Y., 1975, Chapter 9.
- 3. a) A.A. Krasnovskii, Jr., M.G. Shaposhnikova, and F.F. Litvin, Biophysika, <u>19</u>, 650 (1974). b) I.M. Byteva, G.P. Gurinovich, and O.M. Petsol'd, ibid., <u>20</u>, 51 (1975). c) J.-H. Fuhrhop and D. Mauzerall, Photochem. Photobiol., <u>13</u>, 453 (1971).
- 4. P.H. Hynninen, M.R. Wasielewski, and J.J. Katz, Acta Chim. Scand., submitted for publication.
- 5. H. Scheer and H. Wolf, Tetrahedron, 28, 5839 (1972).
- S.J. Baum, B.F. Burnham, and R.A. Plane, Proc. Natl. Acad. Sci. USA, 52, 1439 (1964).
- H. Scheer and J.J. Katz, "Porphyrins and Metalloporphyrins", K. Smith, Ed., Elsevier, Amsterdam, The Netherlands, 1975, pp. 399-524.
- 8. H. Scheer and J.J. Katz, J. Am. Chem. Soc., 97, 3273 (1975).